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When should we draw arrows?  
Assessing the use of Bayesian networks in 
philosophy of science
¿Cuándo deberíamos dibujar flechas?  
Evaluando el uso de redes Bayesianas en filosofía de la ciencia

Pablo Rivas-Robledo*

Abstract
In this paper I present the criteria under which it is admissible to draw arrows in Bayesian networ-

ks. I argue that arrows can be used to represent asymmetric, non-transitive, difference-making 

relationships in Bayesian networks. Moreover, since these graphs are not heterogeneous, there 

should be uniformity in what the arrows are representing. That is, a single Bayesian network can-

not represent a variety of  difference-making relationships. I use this asses two models found in 

the literature for transferring evidence in intertheoretic reduction. I conclude that these models 

are either unable to represent the fact that evidence   from one theory is evidence for the other 

theory, or that they operate with assumptions that contradict the central tenets of  intertheoretic 

reduction. I offer a possible way out of  this predicament by proposing heterogeneous graphs 

that can be condensed into Directed Acyclic Graphs (dags).

Keywords: confirmation, intertheoretic reduction, bayesian models, bayesian epistemology, 
graph theory, heterogeneous graph.

Resumen
En este artículo presento los criterios bajo los cuales es admisible dibujar flechas en redes Baye-

sianas. Argumento que las flechas pueden ser utilizadas para representar relaciones asimétricas, 

no transitivas y que hacen la diferencia en las redes Bayesianas. Además, dado que estos gráficos 

no son heterogéneos, debería existir uniformidad en lo que las flechas están representando. Es 

decir, una única red Bayesiana no puede representar una variedad de relaciones que hacen la 

diferencia. Utilizo esto para evaluar dos modelos encontrados en la literatura para transferir evi-

dencia en la reducción interteórica. Concluyo que estos modelos no pueden representar el hecho 

de que la evidencia de una teoría es evidencia para la otra teoría, o que operan con supuestos que 

contradicen los principios centrales de la reducción interteórica. Ofrezco una posible salida de 
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este dilema proponiendo gráficos heterogéneos que pueden ser condensados en Grafos Acícli-

cos Dirigidos (gad).

Palabras clave: confirmación, reducción interteórica, modelos bayesianos, epistemología 
bayesiana, teoría de grafos, grafo heterogéneo.

Introduction

Bayesianism is a theory of  uncertainty (Hájek & Hartmann, 2010, p. 
93). It can be used to model the reasoning of  agents whose epistemic 
attitudes are taken as degrees of  belief  and follow the laws of  proba-
bility to develop a theory of  subjective Bayesian inference (Sprenger 
& Hartmann, 2019, p. 1). Although initially developed as a mathe-
matical tool, Bayesian inference has found its way into philosophy in 
recent years, shedding light on various problems in different areas, 
more prominently in epistemology (see Bovens and Hartmann, 2004; 
Talbott, 2016). More recently, subjective Bayesian inference has been 
used to explain scientific concepts or to capture arguments that are 
part of  scientific reasoning, giving rise to Bayesian philosophy of  
science (see Sprenger and Hartmann, 2019, p. xxv).

 A central tool of  subjective Bayesian inference is the use of  Ba-
yesian networks (bns). These are a form of  representation used to 
organise one’s knowledge about a given situation into a coherent 
whole, facilitating an economical representation of  joint probabi-
lity distributions and efficient inferences from observations (Pearl, 
1988, pp. 77, 116; Pearl, 2009; Wiegerinck et al., 2013, p. 402, see also 
(Darwiche, 2009)). These have a number of  important properties 
and limitations, which I will discuss in detail in section 2. For present 
purposes, I will note that bns are a modelling tool that plays an im-
portant role in Bayesian philosophy of  science. They are essentially 
directed acyclic graphs (dag) consisting of  a pair G = (V, E), where 
V is a finite set of  nodes or vertices and E is a finite set of  edges 
(also known as arcs or arrows) between nodes (Pearl, 1988, Chapter 
3; Pearl, 2009, Sec. 1.2.2)1.

Arrows are the main theme of  this paper. Originally, arrows were 
used in bns to show the correlation between probabilistic variables 
(Wright, 1921, pp. 559-560). A few decades later, they were also used 
to encode the existence of  direct causal influences between any two 
connected nodes (Pearl, 1985, p. 331; Pearl, 1988, p. 77) and tempo-
ral relations (S. Lauritzen, 1979/1982; Wermuth & Lauritzen, 1982; 
Kiiveri et al., 1984).

1

I will use the term arrow 
because it conveys a sense of  
direction that the other two 
terms do not.
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The study of  arrows per se and their role is a relatively unexplo-
red but worthwhile topic, as many simply take it for granted. Here, 
I will argue that a careful analysis of  what arrows really are provides 
a very important condition for the construction of  Bayesian models 
in the philosophy of  science, since they can describe only one kind 
of  relation per graph. That is, one cannot draw an arrow between 
two nodes in the same graph that represents more than one kind of  
influence on the nodes.

Traditional mathematical and probabilistic Bayesian models to-
day are usually data-driven, so this particular property of  bns is of  
little importance for these models. However, I think that the thesis 
defended here is of  great importance for Bayesian philosophy of  
science, as I believe there have been models in recent years that have 
abused the modelling tool. An example of  this is the models of  in-
tertheoretic reduction offered by Dizadji-Bahmani, Frigg, and Hart-
mann (2010; 2011, see also Sprenger and Hartmann, 2019, Variation 
8) and the derivative model presented by Tešić almost a decade after 
(2019). I will call the former gns and the latter gns*.

Based on my analysis of  arrows, I will argue that these models 
fails to describe intertheoretic reduction because they represent mul-
tiple relations with just one arrow, even relations that are symmetri-
cal. I argue that these models are faced with the problem of  either 
accepting that all arrows represent confirmation, and therefore they 
do not adequately describe intertheoretic reduction, or they must 
present a new model in which two bns are used to describe inter-
theoretic reduction. To this end, in section 2, I will first give an over-
view of  bns and explain the representational constraints imposed by 
arrows when modelling probability distributions. In section 3, I will 
explain how Bayesian philosophy uses these tools to answer philo-
sophical questions. In addition, I will present gns and gns* critique 
them in light of  what was defended in section 2. Some conclusions 
will be presented at the end.

Bayesian networks: a primer

Today, bns enjoy a widespread positive reputation, as they are often 
used in real-world applications, which include forecasting (Abram-
son, 1994; Gu et al., 1994), automated vision (Levitt et al., 1990; Rehg 
et al., 1999), manufacturing control (Nadi et al., 1991), integration of  
biological data (Beaumont & Rannala, 2004; Needham et al., 2007), 
diagnostics (Andreassen et al., 1987; Breese et al., 1992), and heal-
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thcare (Kyrimi et al., 2021). On top of  that, they are pretty much 
ubiquitous in artificial intelligence. In this section, I will introduce 
some fundamental concepts relevant for the later discussion, as well 
as some criteria under which it is possible to draw arrows in bns.

As mentioned earlier, bns are a modelling tool for the economic 
specification of  joint probability distributions, meaning that they are 
mainly used to simplify calculations. To see this, let us first imagine 
a probability distribution P defined on n discrete variables ordered 
arbitrarily as X1, X2,...,X3. By the chain rule, we know that we can 
decompose P into a product of  n conditional distributions:

P (x1,..., xn) = II P (xj | x1,..., xj−1)

Yet it may be that the conditional probability of  a variable Xj is 
not sensitive to all its predecessors. So, to calculate the value of  Xj 

we choose the set of  predecessors that do influence it’s value (I will 
call such set PAj), and we calculate the value as. 

P (xj | x1,..., xj−1) = P (xj | paj)

Which considerably simplifies the required input data. Thus, ins-
tead of  specifying all possible values of  all predecessors, we deal 
only with the values of  PAj, the Markovian parents or, simply put, 
parents of  Xj (Pearl, 2009, p. 14). We define the parents of  Xj (PAj) 
as any subset {X1,...,Xj−1} that satisfies the equation (2) such that no 
other suitable subset of  PAj also satisfies it. In this case, Xj is dubbed 
the child node.

This is when Directed Acyclic Graphs (dags) come in handy, as 
we can graph the assignment of  each variable Xj to a set PAj. They 
are directed, which means that that each edge is oriented from one 
edge to another, and they are acyclic, which means following the 
direction of  the edges will never create a closed loop.

The construction of  a dag, which models the distribution, can 
follow a recursive method (Pearl, 2009, p. 15): we start with the pair 
(X1,X2), we draw an arrow from the first to the second only if  they 
are dependent according to equation (2); we continue with X3 by 
drawing no arrows if  it is independent of  {X1,X2}, otherwise we 
draw an arrow from X2 to X3, if  X2 screens off  X3 from X1 (P(x3 
| x2, x1) = P(x3 | x2)) and we draw an arrow X1 to X3 for the case 
that X1 screens off  X3 from X2; if  no screening is found, then we 
draw arrows from X1 and X2 to X3. And so on for every other va-

j
(1)

(2)
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riable in the distribution. In general, at each j-stage of  drawing, take 
the minimal set of  Xj ’s predecessors that screen off  Xj from other 
predecessors (see equation (2)), this is the set PAj, and draw an arrow 
from each member of  PAj to Xj.

For example, consider the typical distribution P defined by the 
binary variables X1, X2, X3, X4, X5, where these variables represent 
(respectively) the season of  the year, the amount of  precipitation, 
whether the sprinkler is on, the wetness of  the sidewalk, and whe-
ther the sidewalk is slippery. We can draw a dag G to model this 
using the procedure just presented (Fig. (1)):

G then induces a decomposition for the calculation of  the joint 
probability distribution, namely P (x1, x2, x3, x4, x5) = P(x1)P(x2 | x1)
P(x3 | x1)P(x4 | x2, x3)P(x5 | x4). If  this decomposition is compatible 
with the distribution P, we say that G is Markov compatible with P.

A normal mathematical presentation of  bns would dive much 
deeper into the d-separation criterion, the parental Markov condi-
tion, minimality, and faithfulness. Space constraints don’t allow me to 
explain these concepts in detail. However, I think that with the tools 
presented I can make my point about the meaning of  the arrows, to 
which I now turn2.

What do arrows mean?

To answer this question simply with “probabilistic dependence” is 
simply begging the question, as bns are graphical models of  pro-

Figure 1: A DAG for a probability distribution P defined on binary variables X1, X2, X3, X4, X5		
Based on: (Pearl, 2009, p. 15).

2

A clear exposition of  the 
above concepts can be found 
in various texts on the sub-
ject. The original treatment
is, of  course, contained in 
(Pearl, 1988, Chapter 3) and 
can also be found in (Pearl, 
2009, Section 1.2-1.3).
A more mathematically min-
ded presentation is the one 
found in (Neapolitan, 2004, 
Part I). For a more
philosophically informed 
exposition, see (Hitchcock, 
2020, Section 4).
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babilistic dependence. The real question is: what relationships can 
be considered probabilistic dependence? On the surface, one could 
argue that there is a relative consensus about what arrows represent 
in bns. There is a sense in which an arrow between two nodes Xj 

and Xk indisputably means a direct influence from the variable in 
Xj to the variable in Xk. And it is precisely this formulation (“direct 
influence”) that is found in much of  the literature on the subject 
(S. L. Lauritzen and Spiegelhalter, 1988, p. 160; Spiegelhalter et al., 
1993, p. 221; Bovens and Hartmann, 2004, p. 68; Wiegerinck et al., 
2013, p. 405), but it is also spoken of  in more abstract terms, such 
as “class-property relationship” (Pearl, 1988, p. 77). And sometimes 
even the term “causal influence” is used casually (Pearl, 1988, pp. 77, 
117; Sprenger & Hartmann, 2019, p. 33), a notoriously dicult term 
to pin down, but in this case, it simply means that there is a causal 
difference for the value of  the child node, so that the way the parent 
influences the child is not mediated by any other variable (Hitchcock, 
2020, Sec. 2.3).

The most basic way to understand this (especially for philosophi-
cal purposes), I think, is to understand an arrow as difference-making: 
an arrow between two nodes says that the variable in the parent node 
makes a difference in the value that the variable in the child node 
takes. The deliberately vague wording of  the definition corresponds 
to the fact that in most cases the particular interpretation or type 
of  difference-making will vary depending on the application. One 
might well use it to represent physical causality, but that may not be 
the case, since arrows work perfectly fine to represent other types 
of  difference-making relationships (S. L. Lauritzen & Spiegelhalter, 
1988, p. 160).

When should we draw arrows?

However, I think that not all difference making-relationships are t to 
be represented as an arrow in a bn. We basically already know that we 
should draw arrows between variables encoded by nodes that have 
certain relationships, but we need to know what kinds of  relations-
hips are representable. Some criteria can be established if  we recall 
the original motivation for using bns and some of  the principles of  
graph theory.

Let us first address the original motivation for bns. Pearl explains 
that one of  the main reasons for using dags as graphs for bns was 
that (i) they allowed him to represent real dependencies between va-
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riables and (ii) they encoded non-transitive relations (Pearl, 1988, p. 
116; Pearl, 2009, p. 21).

The type of  edges in dags are also important. They go only in 
one direction, which puts the D in dag (Gutin, 2018, p. 163). This 
implies that they are not suitable for properly representing symme-
tric relationships: Their arrows run in only one direction (Bondy & 
Murty, 2008, pp. 31-32), using biderectional edges would immedia-
tely create a cycle, removing the A from the dag. This makes them 
particularly good for representing asymmetric relationships.

Last but not least, we must remember that dags are not heteroge-
neous graphs, which means that the type of  information encoded by 
their nodes and arrows is singular (Wang et al., 2019, pp. 2022, 2024; 
Gan et al., 2021; DGL, 2022). This means that the nodes in dags, 
and therefore in bns, represent one type of  object and the arrows 
represent one type of  relation. There cannot be an arrow describing 
more than one type of  difference-making relationship.

To summarise what has been said so far: bns are a type of  dag, 
compatible with a probability distribution. When constructed from 
data, bns pose almost no problems in constructing a dag compatible 
with the distribution. However, as a modelling tool, the arrows in bns 
can only represent one type of  difference-making relationship, and it 
must be non-transitive and asymmetric.

From Bayesian networks to Bayesian philosophy of 
science

The remarks made in the previous section are crucial to my assess-
ment of  the use of  bns in Bayesian philosophy of  science. In this 
section, I will set out how bns are used in this branch of  philosophy, 
with a particular focus on the difference-making relation of  confir-
mation.

Bayesian philosophy of  science seeks to explain scientific con-
cepts and capture arguments that are part of  scientific reasoning. As 
such, it rarely uses data to construct its bns; rather, the construction 
can occur in two ways: Bayesians either (i) specify a probability distri-
bution for a probability space and construct a bn that is compatible 
with the distribution (which in turn helps them provide a graphical 
representation of  the conditional independencies between variables) 
(Bovens and Hartmann, 2004, see p.68 specially and Chapter 4 for 
an example); or (ii) they relate a set of  terms using a dag and derive 
a set of  probability distributions compatible with the dag such that 



Figure 2: A DAG to represent the Bayesian understanding of the relationship between a hypothesis (H) and 
a body of evidence (E).  
Source: own elaboration based on (Dizadji-Bahmani et al., 2011; Tesic, 2019).
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said graph is considered a bn (Sprenger & Hartmann, 2019, Varia-
tions 2, 3, 8)3.

So, in the first case, it looks like the bn is little more than a vi-
sual aid, since the distribution is already given. In the second case, 
the dag is crucial for determining the distribution. This methodo-
logy (known as parametrization) is not completely unheard of  (see 
Darwiche, 2009, Sec. 4.3; Wiegerinck et al., 2013, Sec. 2.2).

Probably the most important example in this context is the en-
coding of  the relationship between a hypothesis (H) and a body of  
evidence (E). Bayesians want to represent the relationship between 
these two as E as depending probabilistically on H, since E might be 
more likely to be the case if  H is the case than if  it is not. The dag 
is fairly straightforward in this case since we know the direction of  
influence, see Fig. (2).

The parametrization of  the said network is simple, as we only 
need to specify the value of  H and the conditional probabilities of  
the node E given the node H, i.e. P(H), and P(E | H), and P(E | ¬ 
H), which lie in the interval (0, 1). According to the Bayesian fra-
mework, some evidence E confirms a hypothesis H if  P(H | E) > 
P(H) and disconfirms it if  P(H | E) < P(H).

In this case, there is good reason to believe that the differen-
ce-making relationship is direct causal influence. For example, let H 
be the proposition “S has COVID” and E be the proposition “The 
test for COVID is positive”. In this case, P(H) is our prior degree of  
belief  that S has COVID, that is how probable is for her to have the 
virus without us seeing the results, e.g., the proportion of  people in 
her community who have COVID. P(E | H) would be the trueposi-
tive rate and P(E | ¬ H) the falsepositive rate4.

3

Credit where credit is due: 
the ideas presented in these 
chapters of  (Sprenger & 
Hartmann, 2019) first
appeared in (Dawid et al., 
2015), (Sprenger, 2016), 
(Dawid et al., 2015), and (Di-
zadji-Bahmani et al., 2010)
and (Dizadji-Bahmani et al., 
2011).

4

Example is borrowed from 
(Tesic, 2019, p. 1104).
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So obviously having COVID has an influence on whether the test 
is positive or not. In this case, it seems straightforward to acknowled-
ge that there is a causal flow from one proposition to another: having 
COVID symptoms leads to a positive test, provided that the test is 
good (which it is, see (Jarrom et al., 2022)). Now it is not correct to 
say in general that the arrow between H and E represents (physical) 
causation, because sometimes the same bn is used in a more abstract 
way5.

Two Bayesian models of intertheoretic reduction 
and their problems

Sometimes the relationship between hypothesis and evidence is 
more abstract, think on the relationship that exists between a scienti-
fic theory and a body of  evidence. For example, the relationship that 
thermodynamics has to the Joule-Thomson process (Dizadji-Bah-
mani et al., 2011, pp. 323-324): the expected amount of  physical tem-
perature change of  a real gas when forced through a valve or porous 
plug (E) can be calculated using the principles of  thermodynamics 
(H), so we can have a confirmation of  thermodynamics (P(H | E) 
> P(H)), but we cannot say that the principles of  thermodynamics 
physically causes the temperature change. What we can say is that 
the principles of  thermodynamics (H) affects the measurement (the 
calculations themselves) of  the temperature change, in the sense that 
a change in the principles leads to a change in the measurement.

In this case, of  course, we don’t have physical causation as in the 
COVID example, but we still can ascertain that the principles make 
a difference in measurement. Nevertheless, the relationship is clearly 
non-transitive (changing the principles doesn’t change anything the 
evidence influences, since the evidence has no child node) and asym-
metric (changing the way we measure doesn’t necessarily change the 
principles of  thermodynamics). We can then safely conclude that 
there is naturally a probabilistic dependence between these nodes 
precisely because P(E)≠P(H|E)6. Therefore, we are safe if  we draw 
the arrow between the nodes.

The Generalized Nagel-Schaffer model attempts to exploit this 
kind of  relationship between hypothesis and evidence to prove how 
evidence for one theory can actually turn out to be evidence for ano-
ther one. This model asserts that when the former theory is reduced 
to the later, then evidence for the first is evidence for the second 
(Dizadji-Bahmani et al., 2010, p. 406). For example, some evidence 

5

For starters, note that in this 
framework one can represent 
a logical consequence for the 
case P(A | B) = 1.

6

Alternatively, P(H ∩ E) 
≠P(H)P(E).
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in favour of  statistical mechanics is evidence for thermodynamics 
because statistical mechanics is reducible to thermodynamics.

There are two Bayesian models for Generalized Nagel-Schaffner 
reduction, gns and gns*. The gns model was developed in (Dizad-
ji-Bahmani et al., 2010; Dizadji-Bahmani et al., 2011). A unified ver-
sion of  it can be found in (Sprenger & Hartmann, 2019, Variation 8). 
For this very reason, I will quote only from Sprenger and Hartmann 
rather than jump back and forth between the two original texts. The 
gns* model is a modified version of  gns, proposed a few years la-
ter and found in (Tesic, 2019). Before explaining both and pointing 
out some problems, I will briefly show how intertheoretic reduction 
works according to Schaffner (1967, pp. 139140) and Sprenger & 
Hartmann (2019, pp. 209-210).

Consider a phenomenological theory Tp and a fundamental 
theory Tf, each of  them identified with a finite set of  empirical pro-
positions, as follows: Tp = {P1,..., Pn} and Tf = {P1,..., Pm}, where n 
and m are not necessarily the same. The reduction consists in per-
forming the following steps: (1) introduce boundary conditions and 
auxiliary assumptions to form an extended version of  Tf, T

*; (2) con-
nect different terms in both theories using bridging laws, then substi-
tute terms in T* with the terms of  Tp according to the laws to obtain 
T*; (3) show that each element of  T* is strongly analogous to Tp.

Two models

In synthesis, the general idea behind intertheoretic reduction is to 
show that the concepts and laws of  a phenomenological theory can 
be reduced to some other concepts and laws of  a fundamental theory 
in an overlapping domain (Sprenger & Hartmann, 2019, p. 207). If  
we establish reducibility between two theories, this means not only 
that there is consistency between them, but also that we can use 
evidence in favour of  one theory as evidence for the other (Nagel, 
1961, Sec. III.1). This last point is a well-accepted consequence of  
intertheoretic reduction (Wimsatt, 1974, p. 678; Van Riel, 2014, Sec. 
8.7.2; Sarkar, 2015, p. 47), but the biggest challenge for Bayesians 
has been to be able to prove it using the modeling tools they value 
so much: probability distributions, bns, and the relationship between 
hypothesis and evidence that presented above. 

One way is to follow gns and represent the intertheoretical re-
duction as follows: first draw a dag with evidence for the phenome-
nological theory (Ep), evidence for both theories (E), and evidence 



Figure 3: A DAG for GNS before the reduction. 
Source: (Tesic, 2019, p. 1105).

Figure 4: A DAG for GNS after the reduction.  
Source: (Tesic, 2019, p. 1106).
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for the fundamental theory (Ef). This gives an overview of  the flow 
of  confirmation before a reduction is reached (see Fig. (3)). Then 
draw a new one containing the phenomenological theory (Tp), the 
fundamental theory (Tf  ), the phenomenological theory with terms 
replaced (T*), and the fundamental theory with assumptions (T*). 
This gives us an insight into the flow of  confirmation after reduc-
tion (see Fig. (4))7.

From there, gns parameterizes a probability distribution compati-
ble with said dag, and we get our bn. For brevity, I give only the most 
important values, the entire distribution can be found in (Sprenger 
& Hartmann, 2019, pp. 213-215). So, the relevant probabilities are:

7

For clarity, the example 
refers to a theory with only 
one empirical proposition.



Figure 5: A DAG for GNS*.  
Source: (Tesic, 2019,p. 1112).
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P(Tf ) = tf

P(Ef | Tf ) = rf, P(Ef | Tf ) = qf

P(Ep | Tp) = rp, P(Ef | Tp) = qp

P(Tp | T*) = r*, P(Tp | ¬T*) = q*

P(T* | Tf ) = r* , P(T* | ¬Tf = q*

P(Tp | T*) = r*, P(Tp | ¬T*) = q*

P(T* | T*) = 1, P(T* | ¬Tf ) = 0

The beauty of  this bn is that we can prove (i) that Ef  confirms 
Tp if  (rf  −qf  )(r

* −q*)(r* −q*) > 0; and (ii) that Ep confirms Tf  if  (rp 
− qp)(r

*− q*)(r* − q*) > 0 (see Theorems 8.1 and 8.2 of  (Sprenger & 
Hartmann, 2019)). Hence the body of  evidence that was exclusive to 
one theory becomes evidence for both.

Teŝić (2019) disagrees with this model because (i) the conditional 
probabilities between the bodies of  evidence may not remain the 
same after reduction, (ii) it does not allow for partial reductions, and 
(iii) it allows for an equality that is not always the case, namely P(T*) 
= P(T*), since in gns P(T* | T*) = 1. He then presents a different Ba-
yesian treatment of  the matter (gns*), which gives a more prominent 
role to the bridge laws: whereas they were previously supposed to be 
implicit in the process of  obtaining T* from T*, they now appear as 
a root node with an edge dominating T* (Fig. (5)):



Artículos de investigación | Research Articles 59

The new distribution changes slightly because values for P(B) 
must now be given, the value of  P(T* | T*) is not set to 1, and there 
is a conditional distribution of  the new conditional probability (T* at 
B). This allows gns* not only to prove the same thing as gns (eviden-
ce for the reduced theory is evidence for the reducing one and vice 
versa), but also to determine when this transfer is actually relevant, 
i.e., when Ep actually contributes to Ef  confirmation of  Tf  and vice 
versa (see Theorems 5-8).

Some problems for these models

Recall that arrows in dags mean an asymmetric and non-transitive 
difference-making relationship and that you can only represent one 
kind of  relation by arrows, since dags are not heterogeneous graphs. 
It is also worth remembering that constructing bns from dags is 
about parameterizing dag to find a Markov compatible probability 
distribution.

Although I agree with Teŝić assessment of  gns, I generally disa-
gree with the way the intertheoretical reduction is modeled. The first 
problem I see with both models is the large number of  relations mo-
deled in both bns. Before the reduction, we have some nice arrows 
connecting theories to evidence, as explained in the section (3) and 
at the beginning of  the section (4). This relation is a very particular 
one that relates an empirical set of  propositions to some evidence 
for them.

After the reduction, however, we witness how a number of  new 
relations are added to the model. The problems are the following:

1.	 The relation between Tf and T* is that of  derivation. While 
this can be represented probabilistically, it is not the same 
relationship as that between Tf and the evidence supporting 
it. The derivation in the case of  Tf and T* is transitive, whi-
le there is by definition no transitive relation between the 
theory and its evidence. This creates two problems for this 
arrow: it is not coherent with the dag and is transitive.

2.	 In gns the relation between T* and T* is a relation between 
the vocabularies of  the terms present in both theories, it is 
a conventional but semantic relation obtained thanks to the 
bridge laws (Nagel, 1961, p. 354). The problem with this re-
lation is that it is symmetric and is not captured by restricting 
P(T* | T*) to 1, because that tells us nothing about how the 
vocabulary in T* is related to the vocabulary in T*. To repre-
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sent this, we would have to accept that P(T* | T*) = P(T* | 
T*), which cannot be represented in a dag, since this would 
create a loop.

3.	 As for the same arrow in gns*, the new arrow no longer 
represents the logical consequence, but since the bridge laws 
are now exogenously defined: we are forced to read the re-
lation between the restricted version of  the fundamental 
theory and T* as T* depending not only on T*, but also on B. 
The problem is that the relation between T* and T* is diffe-
rent from that between B and T*. So even if  we could prove 
that one of  the two relations is the same as the one represen-
ted before the reduction in bn, we would still have an alien 
relation in both cases.

4.	 Lastly in both gns and gns* we have found an arrow between 
T* and Tp that attempts to capture strong analogy in both 
cases. However, analogy is usually a symmetric relationship, 
so if  analogy exists between objects/propositions X and Y, 
then it also exists between Y and X. Even if  one could argue 
that it is non-transitive (which is also not always the case, 
especially in scientific reasoning. see (Achinstein, 1964, p. 
342)), it is still not representable with an arrow.

In view of  the above, I believe that both gns and gns* are not 
adequate bns, since they violate the principles of  modeling just listed. 
I will now move on to the conclusions, where I will point out some 
consequences of  this and outline some possible ways out.

Conclusion: a way out?

In this paper I defended that arrows in dags and consequently in 
bns can only be drawn to represent asymmetric, non-transitive, di-
fference-making relationships. Moreover, arrows should represent 
only one such relation per dag. I then showed how this is relevant to 
Bayesian philosophy of  science by arguing that two models for inter-
theoretic reduction do not reflect these principles and are therefore 
not suitable for modeling purposes.

There are three possible ways out of  this predicament, each with 
its own difficulties. The first is to accept the difficulties of  the model 
after the reduction and return to the original bn, which satisfies the 
criteria presented in this paper. One could establish the main results 
of  gns and gns* with non-Bayesian arguments, but this perhaps de-



Figure 6:  A heterogeneous graph for intertheo-
retic reduction that can represent the different 
relations observed. Theory-evidence in blue, 
strong analogy in green, inter-definition via 
bridge laws in yellow and derivation in purple. 
Source: own elaboration

Figure 7: A DAG for intertheoretic reduction 
where the original graph has been condensed 
and thus can be read off as probabilistic 
dependencies. Source: own elaboration	
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feats the purpose of  constructing a Bayesian model of  intertheoretic 
reduction.

The second option would be to reduce the relationships between 
all nodes in the dag to be relations of  confirmation, as shown in Fig. 
(2). This may be promising, but would change the basic assumptions 
about how variables influence each other, completely altering the fra-
mework originally offered by Nagel and Schaffner. For example, one 
would have to accept that strong analogy is nothing more than an 
asymmetric relationship.

There is a third possible way out, which I personally consider 
more promising, but which unfortunately requires major changes in 
our modeling apparatus. That is, to diversify the formal apparatus 
of  Bayesian philosophy and introduce condensable heterogeneous 
graphs to better model concepts that require different kinds of  di-
fference-making relationships (and perhaps even different kinds of  
variables). A graph is heterogeneous if  it has different types of  no-
des and arrows, and it is condensable if  each strongly connected 
component can be contracted into a new graph (i.e., each subset of  
nodes that can reach each other becomes a single node (Bondy & 
Murty, 2008, p. 63)). We could apply this by constructing a heteroge-
neous cyclic graph that might contain loops, and then condensing it 
into a dag. For example, consider this new graph, which disregards 
the limitations imposed by the theory of  bn to favor a graphical re-
presentation (Fig. (6)).

Since any compactification of  a directed graph directed graph is a 
dag (Harary et al., 1965, Theorem 3.6), we can find a dag that meets 
our needs (Fig. (7)). This may prove to be very effective, since we 
can still represent all the different relationships and at the same time 
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mask them as probability dependencies. So, it may work as a better 
graphical representation of  the concept.
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